Flexible Spectrum Assignment for Local Wireless Networks
نویسندگان
چکیده
In this dissertation, we consider the problem of assigning spectrum to wireless local-area networks (WLANs). In line with recent IEEE 802.11 amendments and newer hardware capabilities, we consider situations where wireless nodes have the ability to adapt not only their channel center-frequency but also their channel width. This capability brings an important additional degree of freedom, which adds more granularity and potentially enables more efficient spectrum assignments. However, it also comes with new challenges; when consuming a varying amount of spectrum, the nodes should not only seek to reduce interference, but they should also seek to efficiently fill the available spectrum. Furthermore, the performances obtained in practice are especially difficult to predict when nodes employ variable bandwidths. We first propose an algorithm that acts in a decentralized way, with no communication among the neighboring access points (APs). Despite being decentralized, this algorithm is self-organizing and solves an explicit tradeoff between interference mitigation and efficient spectrum usage. In order for the APs to continuously adapt their spectrum to neighboring conditions while using only one network interface, this algorithm relies on a new kind of measurement, during which the APs monitor their surrounding networks for short durations. We implement this algorithm on a testbed and observe drastic performance gains compared to default spectrum assignments, or compared to efficient assignments using a fixed channel width. Next, we propose a procedure to explicitly predict the performance achievable in practice, when nodes operate with arbitrary spectrum configurations, traffic intensities, transmit powers, etc. This problem is notoriously difficult, as it requires capturing several complex interactions that take place at the MAC and PHY layers. Rather than trying to find an explicit model acting at this level of generality, we explore a different point in the design space. Using a limited number of real-world measurements, we use supervised machine-learning techniques to learn implicit performance models. We observe that these models largely outperform other measurement-based models based on SINR, and that they perform well, even when they are used to predict performance in contexts very different from the context prevailing during the initial set of measurements used for learning. We then build a second algorithm that uses the above-mentioned learned models to assign the spectrum. This algorithm is distributed and collaborative, meaning that neighboring APs have to exchange a limited amount of control traffic. It is also utility-
منابع مشابه
The Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks
With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...
متن کاملA New Method based on Intelligent Water Drops for Multicast Routing in Wireless Mesh Networks
In recent years a new type of wireless networks named wireless mesh networks has drawn the attention of researchers. In order to increase the capacity of mesh network, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi channel wireless mesh networks. Therefore, the main challenge of these networks is how to properly assign the channels to the radios. O...
متن کاملA Novel Multicast Tree Construction Algorithm for Multi-Radio Multi-Channel Wireless Mesh Networks
Many appealing multicast services such as on-demand TV, teleconference, online games and etc. can benefit from high available bandwidth in multi-radio multi-channel wireless mesh networks. When multiple simultaneous transmissions use a similar channel to transmit data packets, network performance degrades to a large extant. Designing a good multicast tree to route data packets could enhance the...
متن کاملSpectrum Assignment in Cognitive Radio Networks Using Fuzzy Logic Empowered Ants
The prevalent communications networks suffer from lack of spectrum and spectrum inefficiency. This has motivated researchers to develop cognitive radio (CR) as a smart and dynamic radio access promised solution. A major challenge to this new technology is how to make fair assignment of available spectrum to unlicensed users, particularly for smart grids communication. This paper introduces an i...
متن کاملA new SDN-based framework for wireless local area networks
Nowadays wireless networks are becoming important in personal and public communication andgrowing very rapidly. Similarly, Software Dened Network (SDN) is an emerging approach to over-come challenges of traditional networks. In this paper, a new SDN-based framework is proposedto ne-grained control of 802.11 Wireless LANs. This work describes the benets of programmableAcc...
متن کاملChannel Assignment in Wireless Local Area Networks
The tremendous growth of wireless networks requires an efficient use of the scarce radio spectrum allocated to wireless communications. However, the main difficulty against an efficient use of radio spectrum is given by interferences, caused by unconstrained simultaneous transmissions, which result in damaged communications that need to be retransmitted leading to a higher cost of the service. ...
متن کامل